Unfortunately some people cannot work this out. They look for someone else to blame. They think that if a diver gets bent it must be the fault of the divemaster or boat owner or perhaps the instructor or the instructor’s training organisation or perhaps the equipment manufacturer or maybe stress from work or, and this is very sad, but do you realise the diver’s parents never actually had sex together. That excuses everything.

Let me make this clear, if a diver gets bent it is his or her fault! Not only should they suffer the pain and inconvenience and cost of the injury, they should be fined! (well, not really, but you get the idea). The boat owner should be able to demand compensation! Do not think that this is so outrageous, dangerous drivers of cars are fined if they have an accident, why not dangerous divers? What is more, if a diver fails to report post-dive symptoms to the divemaster resulting in delayed treatment, then the diver has to take the blame for the more severe or permanent injury which could occur. Ignorance of the law is no excuse, but (proclaimed) ignorance of the laws of diving apparently is. “The divemaster never told me I could get bent”. Well I am telling everyone now, to be a safe diver you need skills (and good health), knowledge, the right equipment and good luck. If you do not have them and you get hurt then it is your fault.

Dangerous divers are those who attempt dives for which they do not have sufficient skills, knowledge nor the correct equipment. If they get away with it, well that is their good luck. If they do not, and get hurt, make them pay! A diving certification means no excuses. I am sure responsible (= safe) divers will cheer, and if a responsible diver gets hurt through some unpredictable event, or an admitted mistake, we can show the appropriate mercy. How many of you have had dives ruined by dangerous divers who dive beyond their ability or who make no effort to keep themselves in touch with responsible diving?

The very dangerous result of encouraging the transfer of blame from the diver to a third party (which is apparently the aim of Workplace diving legislation) is that it removes the incentive for people to become skilled at what they do. They unrealistically imagine that “the dive master will look after me.” It also encourages legal action against the dive master or operator by lazy, stupid or corrupt divers after a bit of easy money. There is actual evidence of this in Queensland.

It has been said that amateurs practice until they get it right and professionals practice until they cannot get it wrong. To be a safe diver the professional approach is required and this takes time and effort. Passive participation in diving is just not possible. Unfortunately things will inevitably go wrong from time to time, even with the most experienced and well trained diver, and that is because:-

1. People make mistakes. Alas we are but human.
2. Unpredictable events occur.

Safe diving, from my personal experience, involves avoiding other divers underwater as much as possible so that I will not be troubled by their mistakes and being totally self-sufficient, with redundant systems, so that if even I make a mistake I can easily recover. I also like to know that there is someone competent looking out for me on the surface and able to rescue me if I end up away from the boat. To avoid unpredictable effects of a negative kind I worship Neptune, the occasional sacrifice of an old Nikonos camera seems to do the trick just fine!

Diving is Adventure and this implies exposure to increased risk. I wish you great adventures, just assume the risk and, if you stuff up, take the blame.

Reprinted, by kind permission of the Editor from THE JOURNAL OF UNDERWATER EDUCATION (the NAUI instructor magazine) Second Quarter 1997; 32-34.

Bob Halstead is a diving instructor and has provided wonderful diving in New Guinea waters from the Telita for many years. His address is PO Box 141, Earlville, Cairns, Queensland 4870, Australia. Phone +61-070-547-401 Fax +61-070-547-436. E-mail halstead@internetnorth.com.au

IN-WATER RECOMPRESSION AS AN EMERGENCY FIELD TREATMENT OF DECOMPRESSION ILLNESS

Richard Pyle and David Youngblood

Abstract

In-water recompression (IWR) is defined as the practice of treating divers suffering from decompression illness (DCI) by recompression underwater after the onset of DCI symptoms. The practice of IWR has been strongly discouraged by many authors, recompression chamber operators and diving physicians. Much of the opposition to IWR is founded in the theoretical risks associated with placing a person suffering from DCI into the uncontrolled underwater environment. Evidence from available reports of attempted IWR indicates an overwhelming majority of cases in which the condition of DCI victims improved after attempted IWR. At least three formal methods of IWR have been published. All of them prescribe breathing 100% oxygen for prolonged periods of time at a depth of 9 m (30 ft), supplied using a full face mask. Many factors must be considered when determining whether IWR should be
implemented in response to the onset of DCI. The efficacy of IWR and the ideal methodology employed cannot be fully determined without more careful analysis of case histories.

Key Words
Air, decompression illness, hyperbaric oxygen, oxygen, treatment.

Introduction

There are many controversial topics within the emerging field of “technical” diving. This is not surprising, considering that technical diving activities are often high-risk in nature and extend beyond widely accepted “recreational” diving guidelines. Furthermore, many aspects of technical diving involve systems and procedures which have not yet been entirely validated by controlled experimentation or by extensive quantitative data. Seldom disputed, however, is the fact that many technical divers are conducting dives to depths well in excess of 39 m (130 ft) for bottom times which result in extensive decompression obligations, and that these more extreme dive profiles result in an increased potential for suffering from decompression illness (DCI).

Although technical diving involves sophisticated equipment and procedures designed to reduce the risk of sustaining DCI from these more extreme exposures, the risk nevertheless remains significant. Along with this increased potential for DCI comes an increased need for many "technical" divers to be aware of, and prepared for, the appropriate implementation of emergency procedures in response to DCI. In the words of Michael Menduno,1 “The solution for the technical community is to expect and plan for DCI and be prepared to deal with it”.

There is almost universal agreement on the practice of administering oxygen to divers exhibiting symptoms of DCI. This practice is strongly supported both by theoretical models of dissolved-gas physiology and by empirical evidence from DCI cases. The answer to the question of how best to treat the afflicted diver beyond the administration of oxygen, however, is not as widely agreed upon. Perhaps the most controversial topic in this area is that of in-water recompression (IWR); the practice of treating a diver suffering from DCI by placing them back underwater after the onset of DCI symptoms, using the pressure exerted by water at depth as a means of recompression.

At one extreme of this controversy is conventional conviction: divers showing signs of DCI should never, under any circumstances, be placed back in the water. As pointed out by Gilliam and Von Maier,2 “Ask any hyperbaric expert or chamber supervisor their feelings on in-the-water recompression and you will get an almost universal recommendation against such a practice.” Most diving instruction manuals condemn IWR, and the Divers Alert Network (DAN) Underwater Diving Accident and Oxygen First Aid Manual states in italicized print that “In-water recompression should never be attempted”.3

On the other hand, IWR for treatment of DCI is a reality in many fields of diving professionals. Abalone divers in Australia4,5 and diving fishermen in Hawaii6-8 have relied on IWR for the treatment of DCI on repeated occasions. Many of these individuals walking around today might be dead or confined to a wheelchair had they not re-entered the water immediately after noticing symptoms of DCI.

At the root of the controversy surrounding this topic is a clash between theory and practice.

IWR in theory

There are many important reasons why the practice of IWR has been so adamantly discouraged. The idea of placing a person who is suffering from a potentially debilitating disorder into the harsh and uncontrollable underwater environment appears to border on lunacy. Hazards on many levels are increased with immersion and the possibility of worsening the afflicted diver’s condition is substantial.

The most often cited risk of attempted IWR is the danger of adding more nitrogen to already saturated tissues. Using air or enriched air nitrox (EAN) as a breathing gas during attempted IWR may lead to an increased loading of dissolved nitrogen, causing a bad situation to become worse. Furthermore, the elevated inspired partial pressure of nitrogen while breathing such mixtures at depth leads to a reduced nitrogen gradient across alveolar membranes, slowing the rate at which dissolved nitrogen is eliminated from the blood (relative to breathing the same gas at the surface).

The underwater environment is not very conducive to the treatment of a diver suffering from DCI. Perhaps the most obvious concern is the risk of drowning. Depending on the severity of the DCI symptoms, the afflicted diver may not be able to keep a regulator securely in his or her mouth. Even if the diver is functioning nearly perfectly, the risk of drowning while underwater far exceeds the risk of drowning while resting in a boat. Another complicating factor is that communications are extremely limited underwater. Therefore, monitoring and evaluating the condition of the afflicted diver (while they are performing IWR) can be very difficult.

In almost all cases, attempts at IWR will occur in water which is colder than body temperature. Successful
IWR may require several hours of immersion, and even in tropical waters with full wet suits, hypothermia is a major cause for concern. Exposure to cold also results in the constriction of peripheral circulatory vessels and decreased perfusion, reducing the efficiency of nitrogen elimination. In addition to cold, other underwater environmental factors can decrease the efficacy of IWR. Strong currents often result in excessive exertion, which may exacerbate the DCI problems. (Although exercise can increase the efficiency of decompression by increasing circulation rates and/or warming the diver, it may also enhance the formation and growth of bubbles in a near- or post-DCI situation.) Depending on the geographic location, the possibility of complications resulting from certain kinds of marine life (such as jellyfish or sharks), cannot be ignored.

Published methods of IWR prescribe breathing 100% oxygen at a depth of 9 m (30 ft) for extended periods of time. Such high oxygen partial pressures can lead to convulsions from acute oxygen toxicity, which can easily result in drowning.

Another often overlooked disadvantage of immersion of a diver with neurological DCI symptoms is that detection of those symptoms by the diver may be hampered. The “weightless” nature of being underwater can make it difficult to assess the extent of impaired motor function, and direct contact of water on skin may affect the diver’s ability to detect areas of numbness. Thus, an immersed diver may not be able to determine with certainty whether or not symptoms have disappeared, are improving, are remaining constant, or are getting worse.

The factors described above are all very serious, very real concerns about the practice of IWR. There are really only two main theoretical advantages to IWR. First and foremost, it allows for immediate recompression (reduction in size) of endogenous bubbles, when transport to recompression chamber facilities will take long or when such facilities are simply unavailable. Bubbles formed as a result of DCI continue to grow for hours after their initial formation, and the risk of permanent damage to tissues increases both with bubble size and the duration of bubble-induced tissue hypoxia. Furthermore, Kunkle and Beckman illustrate that the time required for bubble resolution at a given overpressure increases logarithmically with the size of the bubble. Farm and colleagues suggest that “Immediate recompression within less than 5 minutes (i.e. when the bubbles are less than 100 micrometers in diameter) is...essential if rapid bubble dissolution is to be achieved” (italics added). If bubble size can be immediately reduced through recompression, blood circulation may be restored and permanent tissue damage may be avoided, and the time required for bubble dissolution is substantially shortened. Kunkle and Beckman, in discussing the treatment of central nervous system (CNS) DCI, write:

"Because irreversible injury to nerve tissue can occur within 10 minutes of the initial hypoxic insult, the necessity for immediate and aggressive treatment is obvious. Unfortunately, the time required to transport a victim to a recompression facility may be from 1 to 10 hours. The possibility of administering immediate recompression therapy at the accident site by returning the victim to the water must therefore be seriously considered."

The second advantage applies only when 100% oxygen is breathed during IWR. The increased ambient pressure allows the victim to inspire elevated partial pressures of oxygen (above those which can be achieved at the surface). This has the therapeutic effect of saturating the blood and tissues with dissolved oxygen and enhancing oxygenation of hypoxic tissues around areas of restricted blood flow.

There is also some evidence that immersion in and of itself might enhance the rate at which nitrogen is eliminated, however, these effects are likely more than offset by the reduced elimination resulting from cold during most IWR attempts.

IWR in practice

Three different methods of IWR have been published. Edmonds, Lowry and Pennefather in their first edition of Diving and Subaquatic Medicine, outlined a method of IWR using surface-supplied oxygen delivered via a full face mask to the diver at a depth of 9 m (30 ft). According to this method, the prescribed time a treated diver spends at 9 m varies from 30-90 minutes, depending on the severity of the symptoms, and the ascent rate is set at a steady 1 m every 12 minutes (approximately 1 ft/4 minutes). This method of IWR was expanded and elaborated upon in the 2nd Edition (1981), and again in the 3rd Edition (1991), and has come to be known as the “Australian Method”. It has also been outlined in other publications and is presented in Appendix A.

The US Navy (USN) Diving Manual briefly outlines a method of IWR to be used in an emergency situation when 100% oxygen rebreathers are available. Gilliam proposed that this method could “easily be adapted to full facemask diving systems or surface supplied oxygen”. It involves breathing 100% oxygen at a depth of 9 m (30 ft) for 60 minutes in so-called “Type I” (pain only) cases or 90 minutes in “Type II” (neurological symptoms) cases, followed by an additional 60 minutes of oxygen at 6 m (20 ft) and 3 m (10 ft). This method is outlined in Gilliam, and in Appendix B.

The third method, described in Farm et al., is a modification of the Australian Method which incorporates a 10-minute descent while breathing air to a depth 9 m (30 ft) greater than the depth at which symptoms disappear, but
not to exceed a maximum depth of 50 m (165 ft). Following this brief "air-spike", the diver then ascends at a decreasing rate of ascent back to 9 m (30 ft), where 100% oxygen is breathed for a minimum of 1 hour and thereafter until either symptoms disappear, emergency transport arrives, or the oxygen supply is exhausted. This method of IWR, developed in response to the experiences of diving fishermen in Hawaii, has come to be known as the "Hawaiian Method". This method is described in Appendix C.

All three of these methods share the requirement of large quantities of oxygen delivered to the diver via a full face mask at 9 m (30 ft) for extended periods, a tender diver present to monitor the condition of the treated diver and a heavily weighted drop-line to serve as a reference for depth. Also, some form of communication (either electronic or pencil and slate) must be maintained between the treated diver, the tending diver and the surface support crew.

Information on at least 535 cases of attempted IWR has been reported in publications. Summary data from the majority of these attempts are included in Farm et al., who present the results of their survey of diving fishermen in Hawaii. Of the 527 cases of attempted IWR reported during the survey, 462 (87.7%) involved complete resolution of symptoms. In 51 cases (9.7%), the diver had improved to the point where residual symptoms were mild enough that no further treatment was sought and symptoms disappeared entirely within a day or two. In only 14 cases (2.6%) did symptoms persist enough after IWR that the diver sought treatment at a recompression facility. None of the divers reported that their symptoms had worsened after IWR. It is also interesting (and somewhat disturbing) to note that none of the divers included in this survey were aware of published methods of IWR (i.e. all were "winging it", inventing the procedure for themselves as they went along) and all had used only air as a breathing gas.

Edmonds et al. documented two cases of successful IWR in which divers suffering from DCI in remote locations followed the Australian Method of IWR with apparently tremendous success (Cases 8 and 9). Overlock described six cases of DCI involving divers using decompression computers. Of these, four attempted IWR, three with apparent success while the result in the fourth case is unclear. Two of these cases are described as Cases 1 and 5. Hayashi reported two cases of attempted IWR, one of which involved the use of 100% oxygen, and the other, involving air as a breathing gas, was also described in Farm et al. (1986) and is described below as Case 2.

We are aware of 20 additional cases of attempted IWR which have not previously been reported. Of these, two resulted in the death of the attempting divers who were together at the time (Cases 3 and 4) and one resulted in a sore shoulder turning into permanent quadriplegia (Case 11). Another case, for which we do not have details, involved a diver who apparently worsened his condition with IWR, but eventually recovered after proper treatment in a recompression chamber facility. In 6 other cases, the condition of the diver remained constant or improved after attempted IWR and further treatment in a recompression chamber was sought by them. In all 11 remaining cases, the diver was asymptomatic after IWR, sought no further treatment and symptoms did not return.

Without doubt, many more attempts at IWR have occurred but have not been reported. Edmonds et al. (p 175) in discussing the practice of the Australian Method of IWR, note that "Because of the nature of this treatment being applied in remote localities, many cases are not well documented. Twenty five cases were well supervised before this technique increased suddenly in popularity, perhaps due to the success it had achieved, and perhaps due the marketing of the [proper] equipment..." Several professional divers have privately confided to one of us (RLP) that they have used IWR to treat themselves and companions on multiple occasions and all have reported great success in their efforts. Some continue to teach the practice to their more advanced students (although the practice was once taught on a more regular basis, it has since fallen out of widely accepted instruction protocols).

Evaluation of Case Histories

In determining the relative value of IWR as a response to DCI, it is perhaps most useful to carefully examine case histories involving attempted IWR. DCI is, by nature, a very complex, dynamic and unpredictable disorder, and evaluation of the role of IWR as a treatment in reported cases is often difficult. Assessing the success or failure of an attempt at IWR is obscured by the fact that a positive or negative change in the victim’s condition may have little or nothing to do with the IWR treatment itself. Furthermore, even the determination of whether or not a DCI victim’s condition was better or worse after attempted IWR is not always clear. For example, consider the following case, first reported by Overlock:

Case 1. Fiji

Five minutes after surfacing from the fourth dive to moderate depth (22.5-36 m or 75-120 ft) over a 24 hr period, a diver developed progressive arm and back weakness and pain. She returned to 18 m (60 ft) for 3 minutes, then ascended (decompressed) over a 50-minute period, with stops at 9 m (30 ft), 6 m (20 ft), and 3 m (10 ft), breathing air. Tingling and pain resolved during the first 10 minutes of IWR. Three hours after completing IWR, she developed numbness in the right leg and foot, and reported "shocks" running down both legs, whereupon she was taken to a recompression chamber. After 3 US Navy (USN) Table 6 treatments, she still had weakness and some decreased sensation.
The effect of IWR on the recovery of this diver is unclear. Although the pain and weakness were resolved during IWR, more serious symptoms developed hours afterward. Perhaps numbness would never have developed had the diver been taken directly to a recompression chamber instead of re-entering the water, in which case she may have responded to treatment without residuals. On the other hand, had she not returned to the water, the initial symptoms may have progressed into paralysis during her evacuation to the chamber, and she might have ultimately suffered far more serious and debilitating residuals. Cases such as this do not contribute much insight into the efficacy of IWR.

Other cases, however, provide stronger evidence suggesting that IWR has been of benefit. Consider the following case documented in Farm et al. and Hayashi:6,7

Case 2. Hawaii.

“Four fisherman divers were working in pairs at a site about 165 to 180 feet (49.5-54 m) deep. Each pair alternated diving and made two dives at the site. Both divers of the second pair rapidly developed signs and symptoms of severe CNS decompression sickness upon surfingacing from their second dive. The boat pilot and the other diver decided to take both victims to the US Navy recompression chamber and headed for the dock some 30 minutes away (the recompression chamber was an hour away from the dock). During transport, one victim refused to go and elected to undergo in-water recompression, breathing air. He took two full scuba tanks, told the boat driver to come back and pick him up after transporting the other bends victim to the chamber, and rolled over the side of the boat down to a depth of 30 to 40 feet (9-12 m). The boat crew returned after 2 hours to pick him up. He was asymptomatic and apparently cured of the disease. The other diver died of severe decompression sickness in the Med-Evac helicopter en route to the recompression chamber.”7

This is just one example of many which provide compelling evidence that IWR can, in some circumstances, result in dramatic relief of serious DCI symptoms. Ironically, had this incident occurred in an area where a recompression chamber was not an option, both divers would probably have opted for IWR, and the less fortunate victim might possibly have survived the ordeal.

On the other hand, attempts at IWR under inappropriate circumstances can lead to tragedy, as is clearly evident from the following cases:

Twelve experienced divers conducted an 18-minute dive on a wreck in about 64.5 m (215 ft). They surfaced after 38 minutes of air decompression, at which time two of the divers reported “incomplete decompression”. These two divers obtained additional supplies of air and returned to the water in an apparent effort to treat DCI symptoms. They never returned to the boat and their bodies were recovered two weeks later.

The reason for their deaths remains a mystery. It is possible that they were suffering from neurological DCI symptoms, and drowned as a result of these symptoms. The tragedy of this case lies in the fact that they most likely would have survived had they not re-entered the water. The boat was equipped with 100% oxygen (surface-breathing) equipment and emergency air-transport could have delivered the divers to a recompression chamber less than an hour after surfacing. The water temperature in this case was about 16-17° C, and the surface conditions were relatively rough, 1-1.5 m (3-5 ft) seas. Whether or not these divers perished as a direct result of DCI symptoms, they would, in all likelihood, have survived the incident had they not returned to the water.

The main potential benefit of IWR lies in the ability to recompress the DCI victim immediately after the onset of DCI symptoms, before intravascular bubbles have a chance to grow or cause serious permanent damage. The apparent success of many reported attempts of IWR may be attributed to the immediacy of the recompression. In one case, reported by Overlock, IWR began before the diver even reached the surface:20

Case 5. Hawaii.

After ascending from his second 10-minute dive to 57 m (190 ft), a diver followed the decompression ceilings suggested by his dive computer. As he was nearing the end of his computer’s suggested decompression schedule, he suddenly noticed weakness and inco-ordination in both arms, and numbness in his right leg. He immediately descended to 24 m (80 ft) where, after 3 minutes, the symptoms disappeared. After 8 minutes at 24 m (80 ft), he slowly ascended (his companion supplied him with fresh air tanks) over a period of 50 minutes to 4.5 m (15 ft). He remained at this depth until his decompression computer had “cleared”. He felt tired after surfacing, but was otherwise asymptomatic.

In many other cases, IWR was commenced within a few minutes after surfacing, usually resulting in the elimination or substantial reduction of symptoms. In cases where DCI results from gross omission of required decompression, divers may anticipate the probable consequences, and often return immediately to depth as soon as possible in an effort to complete the required decompression. Two such cases are presented here:

Case 6. Hawaii.

While conducting a solo dive at a depth of 58.5 m (195 ft), a diver became entangled in lines and mesh bags. In his struggles to free himself, he extended his time at depth well beyond the intended 10 minutes and
squandered much of the air he had expected to use for decompression. Upon freeing himself, he immediately began his ascent, but was mortified to discover that the boat anchor had broken loose and was gone. Swimming down-current, he fortuitously saw the anchor dragging across the bottom, and quickly caught up with the anchor line at a depth of 18 m (60 ft). At this time, his decompression computer indicated a ceiling of 21 m (70 ft), and his pressure gauge showed that his scuba tank was nearly empty. He slowly ascended to the surface and quickly explained his predicament to his companion in the boat. While waiting for his companion to rig a regulator to a fresh tank of air, he began feeling symptoms of severe dizziness and had problems with his vision. Grasping the second tank under his arm, he allowed himself to sink back down, nearly losing consciousness. Upon reaching a depth of 24 m (80 ft), his clouded consciousness fully resolved and he remained 3-4.5 m (10-15 ft) below his computer’s recommended ceiling during subsequent decompression. Although he eventually left the water before his computer had “cleared”, he did not experience any further symptoms.

Case 7. Central Pacific.

A diver had partially completed his decompression following 15 minutes at 60 m (200 ft), when he became aware of the presence of a very large and somewhat inquisitive Tiger Shark. Initially, the diver maintained his composure, fearing DCI more than the threat of attack. When the shark rose above, passing between the diver and the boat, the diver reconsidered the situation and opted to abort decompression. After a rapid ascent from about 12 m (40 ft), the diver hauled himself over the bow of the 17-foot Boston Whaler (without removing his gear). Anticipating the onset of DCI, he instructed his startled companion to quickly haul up the anchor and drive the boat rapidly towards shallower water. By the time they re-anchored, the diver was experiencing increasing pain in his left shoulder. He re-entered the water and completed his decompression, emerging asymptomatic.

There are many other cases in which divers must interrupt their decompression temporarily, then resume decompression within a few minutes without ever experiencing symptoms of DCI. Sur-D or surface decompression, including the use of oxygen, in a chamber is standard practice commercial (oil rig) diving. Generally, these cases of asymptomatic interrupted decompression are not considered as IWR. However, one such incident which recently occurred in Australia is worth mentioning:

Case 8. Australia.

After spending 18 minutes at a depth of 66 m (220 ft), a diver experienced a serious malfunction of her buoyancy compensator (BC) inflator which resulted in the rapid loss of her air supply and a sudden increase in her buoyancy. Additionally, she became momentarily entangled in a guide line, further delaying ascent, and was freed from the line with the assistance of her diving companion. As they ascended, they were met by a second team of divers just beginning their descent. Although one of the members of the second team was able to provide her with air to breathe, he was unable to deflate her over-expanded BC and both ascended rapidly to the surface. Within 4 minutes, she returned to a depth of 6 m (20 ft) where she breathed 100% oxygen for 30 minutes. She then ascended to 3 m (10 ft) where she completed an additional 30 minutes of breathing oxygen. Upon surfacing, she was taken to a nearby recompression chamber facility, breathing oxygen during the 30 minutes required for transport. Arriving at the facility, she noticed no obvious symptoms of DCI but was diagnosed with mild “Type II” DCI and treated several times in the chamber. She suffered no apparent residual effects.

Although no DCI symptoms developed prior to recompression, serious symptoms undoubtedly would have ensued had recompression not been immediate, given the extent of the exposure and the explosive rate of ascent. It is interesting that a modified version of the Australian Method of IWR was employed, rather than the diver descending to greater depth on air to complete the omitted decompression. Recompression depth was limited to a maximum of 6 m (20 ft) due to concerns of oxygen toxicity at greater depths. The victim was monitored continuously while breathing oxygen underwater by at least two tending divers.

It should be noted that successful attempts at IWR are not limited to cases which take advantage of the ability to immediately recompress the victim. Edmonds et al. reported a case where IWR yielded favourable results many hours after the initial onset of DCI:15

Case 9. Northern Australia.

After a second dive to 30 m (100 ft), a diver omitted decompression due to the presence of an intimidating Tiger Shark. Within minutes of surfacing, he “developed paraesthesia, back pain, progressively increasing incoordination, and paresis of the lower limbs”. After two unsuccessful attempts at air IWR, arrangements were made to transport the victim to a hospital 160 km (100 miles) away. He arrived at the hospital 36 hours after the onset of symptoms and, due to adverse weather conditions, he could not be transported to the nearest recompression chamber, 3,200 km (2,000 miles) away, for an additional 12 hours. By this time, the victim was “unable to walk, having evidence of both cerebral and spinal involvement”, manifested by many severe neurological ailments. The diver was returned to the water to a depth of 8 m (27 ft), where he breathed 100% oxygen for 2 hours, then decompressed at 1 m every 12 minutes (the Australian
Method. Except for small areas of hypaesthesia on both legs, all other symptoms had remitted by the end of the IWR treatment.

This case suggests that in-water oxygen treatment in depths as little as 8 m (27 ft) can have positive effects on DCI symptoms even after much time has elapsed. It also underscores another aspect of IWR; the fact that it may be the only treatment available in remote areas where recompression chamber facilities are many thousands of kilometres and several days away. For example, Edmonds et al. report on another case which occurred in the Solomon Islands. At the time, the nearest recompression chamber was 3,500 km (2,200 miles) away and prompt air transport was unavailable:

Case 10. Solomon Islands.

Fifteen minutes after a 20 minute dive to 36 m (120 ft), and 8 minutes of decompression, a diver developed severe neurological DCI symptoms, including "respiratory distress, then numbness and paraesthesia, very severe headaches, involuntary extensor spasms, clouding of consciousness, muscular pains and weakness, pains in both knees and abdominal cramps". No significant improvement occurred after 3 hours of surface-breathing oxygen. She was returned to the water and given the Australian Method of IWR, breathing 100% oxygen at 9 msw (30 ft). Her condition was much improved after the first 15 minutes, and after an hour she was asymptomatic, with no recurrence of symptoms.

Although most of the reported attempts at IWR have utilised only air as a breathing gas, this practice has been strongly discouraged due to the risks of additional nitrogen loading. The concern that air-only IWR may transform an already bad situation into tragedy seems clearly validated by the following case:

Case 11. Caribbean.

A young diver experienced pain-only symptoms of DCI after an unknown dive profile. He made three successive attempts at IWR (presumably breathing air), each time worsening his condition. After the third attempt, his condition had degenerated into quadriplegia. Because of transport delays, he did not arrive at a recompression chamber until about three days after the incident. Saturation treatment yielded no improvement in his condition, and he remained permanently paralysed.

Whereas the above case illustrates an unsuccessful attempt to treat relatively mild symptoms of DCI with air-only IWR, the following case, reported by Farm et al., represents an apparently successful attempt at treating very severe symptoms with similar techniques:

Case 12. Hawaii.

Shortly after a third dive to 66-78 m (120-160 ft), a diver developed “uncontrollable movements of the muscles of his legs”. Within a few minutes, his condition deteriorated to the point where he was paralysed; numb from the nipple-line down and unable to move his lower extremities. He was able to hold a regulator in his mouth, so a full scuba tank was strapped to his back and he was rolled into the water to a waiting tender diver. The tender verified that the victim was able to breathe, and proceeded to drag him down to 10.5-12 m (35-40 ft). When the symptoms did not regress, the victim was pulled deeper by the tender. At 15 m (50 ft), he regained control of his legs and indicated that he was feeling much better. He was later supplied with an additional scuba tank, ascended to 7.5 m (25 ft) for a period of time and then finished his second tank at 4.5 m (15 ft). Except for feeling “a little tired” that evening, he regained full strength in his arms and legs and remained asymptomatic.

Another, previously unpublished case, involved a DCI victim whose symptoms were so severe that IWR was not attempted for fear that he would drown:

Case 13. Central Pacific.

Four aquarium fish collectors ascended rapidly from their second 60 m (200 ft) dive of the day, aborting essentially all decompression. All immediately began experiencing nausea and varying degrees of neurological DCI symptoms. Three of the divers returned to a depth of about 15 m (50 ft), but the fourth opted instead to stay in the boat. When the three completed their abridged attempt at IWR (after which all three felt noticeably improved), they headed for shore. Help was summoned, and additional scuba tanks and 100% oxygen were obtained and loaded into the boat. By this time, one of the divers felt only pain in his shoulders, and the other three were experiencing varying degrees of neurological DCI symptoms. The worst of these was a diver who did not attempt IWR immediately after the initial onset of symptoms. He was unable to move his arms or legs and was having difficulty breathing. The other three attempted to assist him back in the water, but they eventually gave up, fearing that he might drown (due to his inability to hold the regulator in his mouth). The other three continued IWR, breathing both air and 100% oxygen at 9-12 m (30-40 ft), until nightfall forced them out of the water. That night, all four took turns breathing 100% oxygen on the surface while waiting for the emergency evacuation plane to arrive. The following day, the three who had attempted IWR were flown to Honolulu, where they experienced varying degrees of recovery after treatment in a recompression chamber. The one who did not attempt IWR died before the plane arrived.
All of the cases described thus far have involved either 100% oxygen or air (or both) as breathing gases during IWR. In at least one reported case, Enriched Air Nitrox (EAN) was used as a breathing gas for the IWR treatment:

After spending 25 minutes at a maximum depth of 44.5 m (147 ft), a diver ascended using the decompression stops required by his tables. He began feeling a tingling sensation and sharp pain in his right elbow as he arrived at his 9 m (30 ft) decompression stop. He completed an additional 30 minutes at 3 m (10 ft) beyond what was called-for by his tables, and then surfaced. His symptoms subsided somewhat after an hour of breathing 100% oxygen on the boat, but persisted enough to prompt the diver to attempt IWR. He returned to the water with an additional cylinder containing EAN-50 (50% oxygen, 50% nitrogen) and descended to 30 m (100 ft) for a period of 10 minutes. He ascended to 6 m (20 ft) over a 10-minute period and remained there for 68 minutes. He spent an additional 5 minutes at 3 m (10 ft), then surfaced asymptomatic, with no recurrence of symptoms.

This case illustrates another fundamental risk associated with IWR; that of acute CNS oxygen toxicity. During the deepest portion of above IWR profile, the diver was breathing an oxygen partial pressure of 2.02 bar, considerably greater than is considered safe. The diver was aware of the potential for acute CNS oxygen toxicity and had an additional cylinder of air with him, just in case. However, he was exposed to this excessive oxygen partial pressure for only 10 minutes.

Should IWR be used?

The source of controversy surrounding the topic of in-water recompression is essentially the conflict between what is predicted by theory and what appears to be demonstrated by practice. In reviewing the issue of IWR, several questions require attention. First and foremost, should IWR ever be attempted under any circumstances? If the answer is "yes", then under what circumstances should it be performed? Also, if the decision to perform IWR has been made, which method should be followed?

The efficacy of IWR

From the cases described above, it should be evident that IWR has almost certainly been of benefit to some DCI victims in certain circumstances. If the selection of cases seems biased towards "successful" attempts at IWR, it is only a reflection of the numbers of actual cases on record (Table 1). Whereas only one additional attempt at IWR (besides Cases 3, 4 and 10) clearly led to deterioration of the condition of a DCI victim, there are literally hundreds of additional cases where IWR was almost certainly of (sometimes great) benefit.

Opponents to the practice of IWR are usually quick to point out that DCI symptoms are often relieved, sometimes substantially, when the victim breathes 100% oxygen at the surface (the presently accepted and recommended response to DCI). Indeed, if symptoms do resolve with surface-oxygen, and recompression treatment facilities are relatively close at hand, then the additional risks incurred with re-immersion seems unwarranted. The two deceased divers discussed in Cases 3 and 4 would have, in all likelihood, survived their ordeal if oxygen had been administered on the boat and transport to the nearby recompression chamber arranged. However, in cases where chamber facilities are not available, or when symptoms persist in spite of surface-oxygen (such as in Cases 10 and 14), then recompression is clearly necessary, and IWR perhaps should be attempted.

Determining circumstances appropriate for IWR

It should also be clear that identifying those circumstances under which IWR should be implemented is an exceedingly difficult task. A wide variety of variables must be taken into account, and many factors must be carefully considered. Although the decision to perform IWR should be made quickly, it should not be made in haste.

Hunt pointed out that DCI often carries with it a certain stigma. Under some circumstances, a diver suffering from the onset of DCI symptoms may be reluctant to reveal their condition to companions. Consequently, such an individual might attempt IWR so as to "fix" themselves without anyone else becoming aware of the problem. For obvious reasons, this alone is not a reasonable justification for considering IWR and is especially dangerous because it likely results in the diver attempting IWR without the safety of an observing attendant or tender. Similarly, IWR should never be thought of as a substitute for proper treatment in a recompression chamber. IWR is not a "poor man's treatment", and the decision to implement it should not be motivated by financial concerns. Regardless of the outcome...
of an IWR attempt, medical evaluation by a trained hyperbaric specialist should always be sought as soon afterward as possible.

The major factor in determining whether IWR should be implemented is the distance and time to the nearest recompression facility. In 1963, Rivera studied more than 900 cases of DCI in USN divers, found that 91.4% of the cases treated within fifteen minutes were successful, whereas the success rate when treatment was delayed 12-24 hours was 85.7%.22 A similar study on DCI cases among sport (recreational) divers showed similar results. Of 394 examined cases, 56% of divers with mild DCI symptoms achieved complete relief when treated within 6 hours, whereas only 30% were completely relieved when treatment was delayed 24 hours or more.23 The same study found that 39% of divers with severe symptoms were relieved when treated within 6 hours, whereas only 26% were relieved when treatment was delayed 24 hours or more. In reviewing these numbers, Moon stressed that delay of treatment for DCI should be minimised, but also noted that response to delayed treatment is not entirely unacceptable.24 Knight recommends that IWR should be considered when the nearest recompression facility is more than 6 hours away.17 Such generalisations are difficult to make, however, as indicated by the fact that the ill-fated diver in Case 2 was less than 2 hours away from a recompression chamber.

One of the most important variables affecting the decision to attempt IWR is the mental and physical state of the diver. Certainly divers who are, for whatever reason, uncomfortable or reluctant to return to the water for IWR should not be coerced or forced to do so. The extent and severity of the DCI symptoms are also important factors. Whether or not mild DCI symptoms (i.e. pain-only) should be treated is not certain. One perspective is that such symptoms are not likely to leave the diver permanently disabled, and thus the risks associated with attempted IWR would not be worth taking. Furthermore, individuals with such symptoms are prime candidates for “making a bad situation worse” (as was demonstrated in Case 11). Conversely, the risks of submerging severely incapacitated divers might override the potential benefits of IWR when serious neurological manifestations are evident. Edmonds recommends against the practice of IWR in situations “where the patient has either epileptic convulsions or clouding of consciousness.”5 The death of the two divers in Cases 3 and 4 might have resulted from drowning due to loss of consciousness from severe neurological symptoms. However, some evidence indicates that IWR may be of value even under these circumstances. Although the divers treated in some cases (e.g. Cases 2, 6, and 12) might have gone unconscious underwater and drowned, the consequences of no immediate recompression may have been equally grave. Also, the diver who perished in Case 13 may have survived had he performed IWR along with his companions.

The immediacy of recompression may be particularly advantageous if DCI symptoms develop soon after surfacing from a deep dive, and when these symptoms are neurological and progressive.25 Under such circumstances, the condition of the DCI victim can rapidly degenerate and permanent damage may ensue in the absence of immediate recompression. However, it is also particularly critical in these circumstances to monitor the condition of the treated diver with a tender close by.

As mentioned earlier, environmental factors such as water temperature, surface conditions, hazardous marine life, and strong currents might significantly influence the feasibility of IWR. Many technical dives are conducted in relatively cold water (such as Europe, the north eastern and western coasts of the continental United States, southern Australia, and many freshwater systems) and the risk of hypothermia and decreased nitrogen elimination rates create additional complications for attempted IWR in these environments. Edmonds et al. and Edmonds have pointed out that reduced water temperature is not necessarily as great a concern as many opponents of IWR have suggested.5,15 The reasoning is that divers in these environments are usually well-equipped with thermal protection such as dry-suits, which have come into wide-spread use among technical divers. If the divers have adequate thermal protection to conduct the initial dive, then they are likely prepared to tolerate additional in-water exposure during IWR. However, Sullivan and Yrana reported after two cases of simulated IWR off Antarctica in -1.4°C water that IWR “cannot be considered sufficiently reliable in [extremely] cold waters...”26

Sharks and other hazardous marine life can complicate IWR efforts. In Case 6, a large Tiger Shark did appear during IWR, but did not influence the diver’s ascent profile. Divers omitted required decompression in Cases 7 and 9 due to the presence of large Tiger Sharks, which led to subsequent attempts at IWR. The risks of this threat are generally minuscule, however these cases illustrate that such problems can occur.

In addition to the factors discussed above, the availability of large quantities of 100% oxygen and the equipment needed to deliver it safely to a diver 9 m (30 ft) underwater are also very important factors when considering an attempt at IWR. These factors are discussed in greater detail in the following section.

Methodology of IWR

Once the decision to perform IWR has been made, the next question to consider concerns methodology. The fundamental difference between the Australian Method and the Hawaiian Method of IWR is that the latter incorporates a deeper “air-spikes” as an initial step in the treatment. The two methods are analogous in form, respectively, to the USN
Table 6 and Table 6A. However, the depths at which 100% oxygen is breathed are shallower, and the durations shorter for the IWR methods than for the chamber schedules.

The primary purpose for the deeper “air-spike” of the Hawaiian Method is essentially to exert a greater pressure on the diver so that the DCI bubbles are further reduced in size. In addition to restoring circulation, the extra “overpressure” may facilitate bubble resolution. Air is used instead of oxygen because of the risk of acute CNS oxygen toxicity which results from breathing oxygen at such depths. Along with the benefits of increased bubble compression, however, come the risks of additional nitrogen absorption during this “spike”.

To address the therapeutic advantages of the “spike”, it is important to examine the physical effects of pressure on bubble size. Although by Boyle’s Law there is a substantial diminishing of returns in terms of bubble size reduction as one descends deeper, gas bubbles are subject to other forces that may affect their size. Although a discussion of bubble physics is beyond the scope of this article, suffice it to say that bubble radii are reduced proportionally more with increasing depth than would be predicted by Boyle’s Law alone. Perhaps more importantly, the pressure of the gas within the bubble increases proportionally more, which leads to increased rates of bubble dissolution. However, the risks of nitrogen loading and nitrogen narcosis increase with depth, adding potentially substantial greater risk to performing the deep spike. A depth of 50 m (165 ft) was chosen by the USN Table 6A and the Hawaiian Method as the maximum at which benefit from recompression was significant. Descent to a depth of 9 m (30 ft), the maximum depth prescribed by the Australian Method, yields a nearly 50% reduction in bubble volume and approximately 20% decrease in bubble diameter. Descent to 50 m (165 ft) further reduces the bubble volume by an additional 33%, and the diameter by an additional 25%. Thus, in the case of bubble volume, more benefit results in the first 9 m (30 ft) of recompression than is gained in the next 41 m (135 ft), whereas the reduction in bubble diameter is slightly greater during the subsequent 41 m (135 ft) depth than the initial 9 m (30 ft). Whether or not bubble diameter or bubble volume is more critical to the manifestation of DCI symptoms is uncertain.

The fundamental question is whether or not the additional recompression confers physiological advantages sufficiently in excess of the disadvantages associated with breathing air at depth (in an IWR situation). Obviously, this depends on the immediate diving history of the afflicted diver and the particular circumstances involved. The practice of subjecting DCI victims to a 50 m (165 ft) spike during chamber treatments has recently begun to fall out of favour among hyperbaric medical specialists. Hamilton points out that “the 6-atm recompression with air or enriched air of Table 6A is likely to be discontinued as evidence accumulates that it offers no real benefit over the 100% oxygen [treatment] of Table 6”. This philosophy may also be applied to IWR treatment procedures. The possibility of substituting Enriched Air Nitrox (EAN) or high-oxygen Heliox during the “spike” must also be examined. Modern technical diving operations often involve EAN for some portion of the dive and thus EAN may be available in some DCI situations. EAN contains a percentage of oxygen which is greater than 21% and may offer therapeutic advantages over air. The presence of nitrogen as a diluent in EAN allows a diver attempting IWR to recompress at a greater depth than permitted by CNS oxygen toxicity when using 100% oxygen. In at least one case (Case 14), EAN was used during IWR, with apparently successful results. James outlined the benefits associated with using 50/50 Heliox (50% helium, 50% oxygen) for recompression therapy. Since helium mixtures commonly incorporated into technical diving operations do not contain such high proportions of oxygen, a supply of high-oxygen Heliox would have to be maintained at the dive site specifically for the purpose of IWR. Unless closed-circuit rebreathers are available at the site, the option of using Heliox for IWR is probably not feasible.

There are a number of safety advantages to the Australian Method over the Hawaiian Method. Since the only breathing gas of the Australian Method is oxygen, there is no risk of additional loading of nitrogen or other inert gases. Thus, if the treatment must be terminated prematurely (e.g. in response to the onset of nightfall; see Case 13), there is no risk of aggravating the DCI symptoms. Furthermore, the Australian Method may be conducted in shallow, protected areas such as lagoons or boat harbours, where sea surface and current conditions are less likely to be adverse.

We are unable at this time to entirely condemn the Hawaiian Method of IWR, for it may confer important advantages under certain circumstances. Edmonds suggests that the Australian Method of IWR is “of very little value in the cases where gross decompression staging has been omitted”, presumably because such situations may require recompression to depths in excess of 9 m (30 ft) (although see Cases 8 and 9). Under such circumstances, interrupted decompression situations, the “spike” might be advantageous. Nevertheless, we are compelled to strongly discourage technical divers from incorporating an “air-spike” into IWR attempts, at least until additional verification of its efficacy can be established through empirical and theoretical lines of evidence.

The USN method of IWR differs from the Australian Method primarily in the recommended ascent pattern. Whereas the Australian Method advocates a slow steady (1 m/12 minutes.) ascent rate, the USN Method divides the ascent into two discrete stages directly to 20 and again to 10 ft. Although at first this difference may seem
trivial, it might, in fact, have important physiological ramifications. Edmonds reports that “It is a common observation that improvement continues throughout the ascent, at 12 minutes per metre. Presumably the resolution of the bubble is more rapid at this ascent rate than its expansion, due to Boyle’s Law”. If this is true, then divers attempting IWR according to the USN Method could conceivably suffer recurrence of symptoms immediately following ascent to the next shallower stage. The validity of this argument has yet to be verified.

Hyperbaric Oxygen

All of the published IWR methods advocate breathing an oxygen partial pressure of 1.9 bar for extended periods. Such high levels permit increased saturation of dissolved oxygen in the blood and tissues, which may help provide badly needed oxygen to areas of restricted circulation or tissue hypoxia. However, at such concentrations and durations the risks of acute CNS oxygen toxicity are a serious consideration. Oxygen partial pressures of 1.2-1.6 bar have been suggested as the upper limit for technical diving operations. The published IWR methods have endorsed exposure to higher oxygen partial pressures because of the therapeutic advantages and because a diver performing IWR is apt to be at rest which reduces the likelihood of an acute oxygen toxicity seizure. In at least one case (Case 8), the depth of in-water oxygen treatment was limited to a maximum of 6 m (20 ft), giving an oxygen partial pressure of 1.6 bar, in an effort to avert oxygen toxicity problems. Because the consequences of convulsions resulting from acute oxygen toxicity are particularly serious underwater, all three published methods of IWR strongly recommend that an attendant diver be continuously present and that oxygen be administered using a full face mask. Although not prescribed in any of the in-water recompression methods, most recent publications discussing the use of oxygen as a decompression gas advise that the long periods of breathing pure oxygen be “buffered” by 5-minute air breaks every 20 minutes. The risk of additional nitrogen loading from these brief periods is more than offset by the reduced risk of acute oxygen toxicity problems.

Standard recompression chamber treatments commonly incorporate breathing 100% oxygen at a pressure equivalent to a depth of 18 m (60 ft) or 2.8 bar, however this should not be attempted during IWR due to changes in human metabolism when immersed in water and to the grave consequences of an oxygen toxicity-induced convulsion underwater.

In the absence of oxygen

Perhaps one of the most critical conditions affecting the decision to perform in-water recompression is the availability of 100% oxygen, especially in a system capable of delivering it to a diver underwater. Although the risk of acute oxygen toxicity symptoms is certainly a cause for concern, the added advantages to effective decompression/recompression are tremendous. However, there will be cases of DCI which occur in situations where 100% oxygen is unavailable. Surely, in light of the theoretical disadvantages of attempting IWR using only air, such a practice would seem absurd. Indeed, all of the cases for which IWR left the divers in worse shape than when they began (e.g. cases 3 and 11), involved air as the only breathing mixture. Furthermore, the diver in case 9 did not improve after air-only IWR and may have exacerbated his condition during his failed attempts. Nevertheless, the vast majority of the reported “successful” attempts of IWR (including cases 2, 5, 6, 7 and 12) were conducted using only air. Several early publications proposed methods of air-only IWR, however none are presently recognised as practical alternatives to oxygen IWR.

In two of the above cases of air-only IWR (cases 5 and 6), the afflicted divers followed the advice of their decompression computers in determining an air recompression/decompression profile, with apparent success. However, as pointed out by Overlock, use of computers for this purpose “was never intended by the designer/manufacturer, nor would it be recommended”. This practice is not advisable as the algorithms utilised by such devices for determining decompression profiles do not account for the complexities introduced by the presence of intravascular bubbles, which can dramatically affect decompression dynamics.

Edmonds et al. sum up air IWR as follows: “In the absence of a recompression chamber, [air IWR] may be the only treatment available to prevent death or severe disability. Despite considerable criticism from authorities distant from the site, this traditional therapy is recognised by most experienced and practical divers to often be of life saving value.”

Our suggestion (and an underlying message of this paper), is that technical divers, who are already familiar with the use of 100% oxygen underwater as a decompression gas, should add to their equipment inventory the necessary items (such as a full face mask and large supplies of extra oxygen) to perform proper IWR procedures. Having done this, these divers avoid facing the decision to perform the risky gamble of air IWR.

Conclusions

The main purpose of this article is to bring forth the issue of IWR as an alternative response to DCI, and to summarise available information on the subject. We do not necessarily endorse IWR; however we see an increasing need for technical divers to become aware of the information
available on this topic. Several disturbing facts have prompted us to bring this issue to light.

First, based on available reports, it is clear that many people are attempting IWR without even knowing that published procedures are available. Furthermore, most reported attempts were conducted using only air. Although the practice seems to have led to a surprising number of successful cases, the advantages of using oxygen for IWR are tremendous and cannot be denied. Thirdly, and perhaps of greatest concern, few of the individuals who successfully attempted IWR sought subsequent examination by a trained diving physician.

We feel compelled to emphasise strongly the importance of seeking a thorough medical examination after any situation where DCI symptoms have been detected. Regardless of how successful an attempted IWR procedure may be, the affected divers should arrange for transport to the nearest recompression facility as soon as possible to undergo examination by a trained hyperbaric medical specialist. The practice of IWR should never be viewed as an alternative to proper treatment in a recompression chamber. Rather, it should be viewed as a means to arrest and possibly eliminate a progressing or otherwise serious case of DCI. In most cases, in-water recompression should be used as an immediate measure to arrest or reverse serious symptoms while arrangements are being made to evacuate the victim to the nearest operating chamber facility. Without doubt, a person suffering from DCI is better-off within the warm, dry, controlled environment of a chamber, under proper medical supervision, than he or she is hanging on a rope underwater.

The information contained in this article is directed at the growing numbers of “technical” divers, who are conducting dives which expose them to elevated risk of sustaining serious DCI symptoms. These sorts of divers tend to be more experienced and better prepared and equipped to handle many of the procedures outlined by published IWR methods. As put forth by Menduno,1 “In-water oxygen therapy appears to be a promising, though perhaps transitional, solution to the problem of field treatment for technical divers. Though the concept will take some work to properly implement on a widespread scale, the technical community does not suffer from the same limitations as its mass market counterpart.” By “transitional”, Menduno was no doubt referring to the possibility that lightweight, portable recompression chambers may soon become standard technical diving equipment, and may be available on a much broader basis in the future. Selby describes one such chamber design which can be compactly stored and quickly assembled in field emergency situations.32 Edmonds,5 however, cautions that:

“When hyperbaric chambers are used in remote localities, often with inadequate equipment and insufficiently trained personnel, there is an appreciable danger from both fire and explosion. There is the added difficulty in dealing with inexperienced medical personnel not ensuring an adequate face seal for the mask. These problems are not encountered in in-water treatment.”

In any case, the present high cost of portable recompression chambers will prevent their widespread availability anytime soon. Furthermore, there will always be DCI incidents in situations where no recompression chambers are available nearby.

Our intention is to illustrate that the issue of IWR is far from clearly resolved. We have little doubt that staunch opponents to the practice of IWR will angrily object to even discussing the issue, on the grounds that it might lead improperly trained individuals to make a bad situation worse. But we adhere to the idea that the dissemination of information to those who may need it is of utmost importance, especially when lives may be at stake. It is indeed tragic when a person suffering a relatively minor ailment resulting from DCI attempts IWR incorrectly and leaves the water permanently paralysed or dead. However, it is perhaps equally tragic when a DCI victim ends up suffering from permanent disabilities because of a long delay in transport to a recompression facility, when the damage might have been reduced or eliminated had IWR been administered in a timely manner. We believe that the time has come to address this issue seriously, openly and with as much scrutiny as possible. Only through further controlled experimentation and careful analysis of reported IWR attempts will this controversial issue progress towards resolution.

In an effort to document larger numbers of IWR cases, we have begun to collect data on this topic and intend to establish a database of reported IWR attempts. If any readers have ever attempted IWR, or know of anyone who has, we would be greatly indebted if information could be sent to Richard L. Pyle, Ichthyology, B P Bishop Museum, PO Box 19000-A, 1525 Bernice Street, Honolulu, Hawaii 96817, USA. or sent by fax to +1-808-841-8968.

Acknowledgments

The authors are indebted to the following individuals for providing information on attempted IWR cases: Pat Bowring, Vance Burton, Rob Cason, R W (Bill) Hamilton, Edwin M Hayashi, Randall K Kosaki, Yancey Mebane, John E Randall, Joel Silverstein, and David Wilder. Also, Lisa Privitera, Dave Gulko and Debbie Gochfeld provided comments and critical review of the manuscript.

References

1 Menduno M. Editorial Section. aquaCorps 1993;
166 SPUMS Journal Vol 27 No. 3 September 1997

5 Edmonds C. In-Water Oxygen Recompression: A potential field treatment option for technical divers. aquaCorps 1993; Number 5 (BENT): 46-49

6 Farm FP Jr, Hayashi EM and Beckman EL. Diving and decompression sickness treatment practices among Hawaii's diving fishermen. Sea Grant Technical Paper UNIHI-SEAGRANT-TP-86-01. Honolulu, Hawaii: University of Hawaii Sea Grant College Program, 1986

8 Pyle RL. In-water recompression: The Hawaiian Experience. aquaCorps 1993; Number 5 (BENT): 50

11 Kunkle TD and Beckman EL. Bubble dissolution physics and the treatment of decompression sickness. Medical Physics 1983; 10 (2): 184-190

13 Balldin UI and Lundgren CEG. Effects of immersion with the head above water on tissue nitrogen elimination in man. Aerospace Medicine 1972; 43: 1101-1108

16 Knight J. In-water oxygen recompression therapy for decompression sickness. SPUMS J 1984; 14 (3): 32-34

17 Knight J. Diver rescue, decompression sickness and its treatment underwater using oxygen. SPUMS J 1987; 17 (4):147-154

21 Hunt JC. Straightening out the bends: Ongoing research on the social reaction and stigma surrounding decompression illness. aquaCorps 1993; Number 5 (BENT): 16-23

25 Francis TIR, Smith DJ and Sykes JJW. Goodbye decompression sickness, hello disorders: A new approach to classification. aquaCorps 1993; Number 5 (BENT): 6-9

27 Hamilton RW. Accepting new terminology for decompression disorders. aquaCorps 1993; Number 5 (BENT): 9

28 James P. Using heliox to treat decompression illness. aquaCorps 1993; Number 5 (BENT): 36-37

29 Hamilton RW. Rethinking oxygen limits. technicalDIVER 1992; 3 (2): 16-19

A version of this paper was originally published in aquaCorps 1995; Number 11 (UNDERGROUND XPLORERS):35-46 without references. aquaCorps has ceased publication and the paper has been revised and references added for this reprinting.
APPENDIX A

THE AUSTRALIAN METHOD OF EMERGENCY IN-WATER RECOMPRESSION

Notes
1. This technique may be useful in treating cases of decompression sickness in localities remote from recompression facilities. It may also be of use while suitable transport to such a centre is being arranged.

2. In planning, it should be realised that the therapy may take up to 3 hours. The risks of cold, immersion and other environmental factors should be balanced against the beneficial effects. The diver must be accompanied by an attendant.

Equipment
The following equipment is essential before attempting this form of treatment.
1. Full face mask with demand valve and surface supply system or helmet with free flow.
2. Adequate supply of 100% oxygen for patient and air for attendant.
3. Wet suit (or dry suit) for thermal protection.
4. Shot line with at least 10 m of rope (a seat or harness may be rigged to the shot).
5. Some form of communication system between patient, attendant and surface.

Method
1. The patient is lowered on the shot rope to 9 m breathing 100% oxygen.
2. Ascent is commenced after 30 minutes in mild cases, or 60 minutes in severe cases, if improvement has occurred. These times may be extended to 60 minutes and 90 minutes respectively if there is no improvement.
3. Ascent is at the rate of 1 m every 12 minutes or 1 foot every 4 minutes.
4. If symptoms recur, stop ascent and remain at depth a further 30 minutes before continuing ascent.
5. If oxygen supply is exhausted, return to the surface, rather than breathe air.
6. After surfacing the patient should be given one hour on oxygen, one hour off, for a further 12 hours.

APPENDIX B

THE US NAVY METHOD OF EMERGENCY IN-WATER RECOMPRESSION

Notes
1. Put the stricken diver on the rebreather and have him purge the apparatus at least three times with oxygen.
2. Descend to a depth of 9 m (30 ft) with a stand-by diver.
3. Remain at 9 m (30 ft), at rest, for 60 minutes for Type I symptoms and 90 minutes for Type II symptoms. Ascend to 6 m (20 ft) after 90 minutes even if symptoms are still present.
4. Decompress to the surface by taking 60 minutes stops at 6 m (20 ft) and 3 m (10 ft).
5. After surfacing, continue breathing 100% oxygen for an additional three hours.

"If the command has 100% oxygen-rebreathers available and individuals at the dive site trained in their use, the following in-water recompression procedure may be used instead of Table 1A:

1. Put the stricken diver on the rebreather and have him purge the apparatus at least three times with oxygen.
2. Descend to a depth of 9 m (30 ft) with a stand-by diver.
3. Remain at 9 m (30 ft), at rest, for 60 minutes for Type I symptoms and 90 minutes for Type II symptoms. Ascend to 6 m (20 ft) after 90 minutes even if symptoms are still present.
4. Decompress to the surface by taking 60 minutes stops at 6 m (20 ft) and 3 m (10 ft).
5. After surfacing, continue breathing 100% oxygen for an additional three hours."

From the U.S. Navy Diving Manual, Vol. One, Section 8.11.2, D.19
Equipment Required

1. An adequate supply of oxygen on board the boat, i.e., a 120 cu ft capacity or greater bottle, an oxygen-clean hose at least 12 m (40 ft) long plus fittings, and an oxygen-clean scuba regulator and mouth piece (NOTE: Use of full face mask with demand regulator is very strongly encouraged for administering oxygen underwater during these treatments).

2. A length of line marked to 9 m (30 ft) from the waterline with seat attached upon which the victim can sit during decompression (the seat should be weighted so as to make victim and seat negatively buoyant).

3. Extra air tanks for victim and attending diver (minimum of two).

4. Anchor rope or sounding float line marked at 50 m (165 ft).

5. Depth gauge and watch for use by attending diver.

6. Wet suit (or other adequate thermal protection) for use by victim with appropriate weights.

Method

Upon recognising symptoms or signs of decompression sickness, immediately

1. Stop the engines (of the boat, if the boat is already moving).
2. Throw over anchor line and let out 165 feet or to bottom.
3. Rig one full air tank for victim and another for attendant diver.
4. Put victim in water with one attendant diver (or two if required) to take victim down anchor line. Extreme caution should be exercised in choice of attendant diver. The risk of DCI occurring in the attendant diver as a result of the IWR attempt should be very seriously considered.
5. Descend to the depth of relief plus 9 m (30 ft). Do not exceed 50 m (165 ft).
6. Keep victim at that depth for 10 minutes.
7. Attending diver and victim start slow ascent with initial rate of 9 m/minute (30 ft/minute) with stops every minute for assessment of patient’s condition.
8. Ascent from maximum depth to oxygen breathing depth should not take less than 10 minutes. Suggested rates of ascent from 50 m (165 ft) are: 9 m/minute (30 ft/minute) x 2 minutes; 4.5 m/minute (15 ft/minute) x 2 minutes; 3 m/minute (10 ft/minute) x 3 minutes; 1.5 m (5 ft/minute) x 3 minutes.
9. If patient starts to experience recurrence of any signs or symptoms, return to 3 m (10 ft) deeper stop for 5 minutes, then resume ascent.
10. During deep air breathing period, crew in boat rigs

Notes

This decompression sickness treatment table was designed for use by Hawaii’s diving fishermen when afflicted with decompression sickness while diving and when more than 30 minutes away from a recompression treatment facility.

In such an event, treatment must be initiated as soon as the signs or symptoms of decompression sickness are recognised. The urgent nature of the treatment must be recognised and acted upon immediately, inasmuch as nervous tissue of the brain or spinal cord can only be completely revived within the first 7 to 8 minutes after its oxygen supply has been stopped by the intravascular bubble emboli of decompression sickness.

(Although its use by technical divers is generally discouraged, this method is presented here for the purpose of providing information to readers. Readers are strongly advised to obtain a copy of Farm et al. for further details concerning this treatment. Some suggested modifications to allow for more general applicability of this method and some additional comments have been added in italics.)

APPENDIX C

THE “HAWAIIAN METHOD” OF EMERGENCY IN-WATER RECOMPRESSION

Notes

This decompression sickness treatment table was designed for use by Hawaii’s diving fishermen when afflicted with decompression sickness while diving and when more than 30 minutes away from a recompression treatment facility.

In such an event, treatment must be initiated as soon as the signs or symptoms of decompression sickness are recognised. The urgent nature of the treatment must be recognised and acted upon immediately, inasmuch as nervous tissue of the brain or spinal cord can only be completely revived within the first 7 to 8 minutes after its oxygen supply has been stopped by the intravascular bubble emboli of decompression sickness.

(Although its use by technical divers is generally discouraged, this method is presented here for the purpose of providing information to readers. Readers are strongly advised to obtain a copy of Farm et al. for further details concerning this treatment. Some suggested modifications to allow for more general applicability of this method and some additional comments have been added in italics.)

Equipment Required

1. An adequate supply of oxygen on board the boat, i.e., a 120 cu ft capacity or greater bottle, an oxygen-clean hose at least 12 m (40 ft) long plus fittings, and an oxygen-clean scuba regulator and mouth piece (NOTE: Use of full face mask with demand regulator is very strongly encouraged for administering oxygen underwater during these treatments).

2. A length of line marked to 9 m (30 ft) from the waterline with seat attached upon which the victim can sit during decompression (the seat should be weighted so as to make victim and seat negatively buoyant).

3. Extra air tanks for victim and attending diver (minimum of two).

4. Anchor rope or sounding float line marked at 50 m (165 ft).

5. Depth gauge and watch for use by attending diver.

6. Wet suit (or other adequate thermal protection) for use by victim with appropriate weights.

Method

Upon recognising symptoms or signs of decompression sickness, immediately

1. Stop the engines (of the boat, if the boat is already moving).
2. Throw over anchor line and let out 165 feet or to bottom.
3. Rig one full air tank for victim and another for attendant diver.
4. Put victim in water with one attendant diver (or two if required) to take victim down anchor line. Extreme caution should be exercised in choice of attendant diver. The risk of DCI occurring in the attendant diver as a result of the IWR attempt should be very seriously considered.
5. Descend to the depth of relief plus 9 m (30 ft). Do not exceed 50 m (165 ft).
6. Keep victim at that depth for 10 minutes.
7. Attending diver and victim start slow ascent with initial rate of 9 m/minute (30 ft/minute) with stops every minute for assessment of patient’s condition.
8. Ascent from maximum depth to oxygen breathing depth should not take less than 10 minutes. Suggested rates of ascent from 50 m (165 ft) are: 9 m/minute (30 ft/minute) x 2 minutes; 4.5 m/minute (15 ft/minute) x 2 minutes; 3 m/minute (10 ft/minute) x 3 minutes; 1.5 m (5 ft/minute) x 3 minutes.
9. If patient starts to experience recurrence of any signs or symptoms, return to 3 m (10 ft) deeper stop for 5 minutes, then resume ascent.
10. During deep air breathing period, crew in boat rigs
oxygen breathing equipment with regulator (or preferably, full face-mask with demand regulator) attached to hose and line with seat at 9 m (30 ft).
11 Upon reaching 9 m (30 ft) victim switches to oxygen breathing.
12 Victim breathes oxygen at 9 m (30 ft) for a minimum of 1 hour.
13. If victim had initial symptoms of pain only, and if signs and symptoms are relieved after 1 hour of breathing oxygen, start slow ascent. If victim had signs and symptoms of CNS disease, keep victim at 9 m (30 ft) on oxygen for one or two additional 30 minute periods. When victim is completely relieved (or emergency transport arrives or oxygen supply is exhausted), start slow ascent to surface while breathing oxygen (or air if oxygen supply is exhausted)
14 If the in-water recompression is not effective and the supply of oxygen is apparently inadequate, emergency transport to the on-shore recompression chamber should be arranged. Technical divers are strongly encouraged to begin making arrangements for emergency transport to a recompression facility as soon as DCI symptoms become evident. Recompression on oxygen at 9 m (30 ft) should be continued until the oxygen supply is exhausted or transport arrives.
15 Even if victim is asymptomatic when reaching surface, have victim breathe oxygen in the boat until the supply is exhausted. Consult with diving medical officer upon return to shore.

Richard L Pyle is a Collections Technician in the Ichthyology Department, B P Bishop Museum, PO Box 19000-A, 1525 Bernice St., Honolulu, Hawaii 96817, USA. Fax +1-808-841-8968. E-mail deepreef@bishop.bishop.hawaii.org .

Dr David A Youngblood is a diving medical consultant with much experience in the commercial diving industry. His address is PO Box 350711, Jacksonville, Florida 32233, USA. Fax +1-904-646-0058.

TECHNICAL DIVING
Carl Edmonds

Key Words
Accidents, deep diving, mixed gas, rebreathing, safety, technical diving.

Introduction
There is considerable doubt as to whether this information should be included in a text dealing with safety aspects of scuba diving. The authors sincerely wish that no normal recreational scuba diver would get involved with this extension of "the diving envelope".

The proponents of technical diving would have you believe that there is very little risk, either as regards death or injury in normal recreation scuba diving (breathing compressed air to a maximum depth of 30-40 m). This is not true, but it can be supported by selective use (or misuse) of statistics.

The reader should know that most of the diving accidents and deaths that occur in recreational scuba diving are not due to decompression sickness. Indeed the major causes include the hazards of the ocean environment, the stress responses on the individual, equipment failure or misuse and some diving practices which are especially hazardous, such as exhaustion of the air supply, buoyancy problems and failure to follow buddy diving practices.

Nevertheless, by concentrating mainly on decompression sickness, it can be made to appear that the accident rate is small for recreational scuba divers. And so it is, if restricted to that particular illness. When divers purport to reduce the incidence of decompression sickness by various techniques, while at the same time increasing the hazards from the more common diving problems, one has to question the motivation.

In Australia, a number of experts in "technical diving" have succumbed to the problems inherent in this activity. Their deaths, usually soon after a marketing campaign to promote this activity, have probably served to protect many younger and less experienced divers.

Definition
I use technical diving to cover diving in excess of the usual range for recreational scuba divers, no-decompression, open circuit, air breathing scuba diving to 40 m. Technical diving may involve an extension of duration at any depth, the depth itself (in excess of 30-40 m), changing the gas mixtures to be used, or using different types of diving equipment. All these fall into the realm of technical diving.

Decompression and deep diving using only compressed air have added risks. Technical diving developed in an effort to avoid some of these risks.

It is important, when discussing technical diving, to specify which type, as the risk varies from little or no additional risk (compared with recreational diving) to an extremely high one, such as with re-breathing equipment. The risks increase as the gas mixture deviates from normal air and with increased complexity of the equipment.