pre-sales testing and inattention on the diver’s part. Shot lines and surface safety lines caused two incidents. In both cases the diver became entangled due to inattention, but no morbidity resulted.

Personal experiences

At an earlier SPUMS meeting, I observed a SPUMS member prepared to commit suicide if he fell off the edge of the boat. Dressed in a wet suit without its jacket, he was wearing his normal heavy weight belt whilst sitting on the gunwale of the dive boat without his scuba gear or fins on. Had he fallen backwards, his only hope of survival would have been immediate release of his weight belt. Unfortunately, few divers drop their weight belts before they die underwater.1,4

During the 1987 SPUMS ASM at Mana Island, Fiji, I maintained contact with the dive boat with a Safety Sausage for about 45 minutes after one dive when my buddy and I missed a short stern safety line in a strong current. As a safety measure, the captain had hung a spare cylinder and regulator below the boat. Unfortunately, the dive boat was short of a line, so one end of the ‘Jesus’ line was used to hang the cylinder under the boat, which shortened the surface safety line by some three metres. We were swept towards the open ocean, while the dive boat, which did not have a tender that day, had to wait for all other divers before coming to collect us. Although the dive boat had two decks and a sun deck above the wheelhouse, we could see the top of it only when we were on the crest of a wave. Without the Safety Sausage we would have been invisible. The boat could follow our progress toward the breaking surf on the reef because I had inflated my Safety Sausage.

Another personal experience, long before the establishment of the DIMS database, was starting a dive and getting a mixture of air and salt water on my second breath. For some reason, the diaphragm of the expiratory valve had flipped out of place and was sucked inwards with each inspiration, letting water into the regulator.

References

3 Begg B. The development of the Safety Sausage. SPUMS J 1987; 17: 163-166

Dr John Knight is a retired anaesthetist and until June 2002 was the Editor of the SPUMS Journal. E mail: <rjknight@labyrinth.net.au>

Dr CJ Acott, FANZCA, DipDHM, is the Coordinator of the Diving Incident Monitoring Study (DIMS) and a consultant for the Diver Emergency Service. Phone: +61-(0)8-8222-5514 Fax: +61-(0)8-8232-4207 E-mail: <cacott@optusnet.com.au>

Exposure suits: a review of thermal protection for the recreational diver

Guy Williams and Christopher J Acott

Keywords
Thermal protection, hypothermia, wetsuit, drysuit, diver training

Abstract
Some basic diving science on diver thermal protection is reviewed. The common methods of thermal protection used by recreational divers and the potential advantages and disadvantages of various forms of exposure protection are discussed. Diving suit related incidents in the Diving Incident Monitoring Study and fatalities in Project Stickybeak are reported.

Introduction

Exposure suits/thermal protection, as used by recreational divers can be categorised into the following groups: skin; Lycra® suits; ‘steamers’ (2–4 mm thick neoprene wetsuits with or without legs); wetsuits (5–9 mm or more, usually with arms and legs covered and often with a neoprene hood); semi-drysuits and drysuits. Some revision of basic diving science and diver cooling is required to review the need for exposure protection.

The thermal conductivity of water is 20 times that of air; that is, it absorbs heat more efficiently. In addition, water movement around the diver causes rapid convection of heat away from the body. As a result, thermal neutrality requires a water temperature of 34°C or more for diver comfort, in less than 34°C all divers will eventually cool to some degree. However, prolonged exposures in wetsuits in water less than 20°C without significant falls in body core temperature have been reported.
Exposure suits reduce convective heat loss, as well as providing varying degrees of thermal insulation. They will slow the cooling rate of water, especially the initial dissipation of heat on immersion. Water temperature, time of exposure, thermal protection, body fat, surface area of the diver, acclimatisation, and level of activity by the diver all contribute to cooling rates. The aim of exposure suits is to avoid hypothermia in the diver. Figure 1 summarises comfort ranges for exposure suits.

Skin

Skin is the most basic thermal protection. The advantages and disadvantages of skin are summarised in Table 1. Skin is best suited to short-term exposure in warm tropical waters.

Lycra

Lycra™, or other thin non-neoprene materials (a variety of materials are available), provides minimal thermal protection, but excellent UV protection. Lycra™ suits are very user friendly, in that they are easy to don, dry rapidly and are lightweight. They also provide some protection from marine stings, and have a role as an undergarment for wetsuits, aiding donning and increasing thermal protection. Lycra™ suits come in a variety of designs, materials and colours. Their main disadvantage is that they provide poor thermal protection, making them suitable only for tropical waters.

Wetsuits and ‘steamers’

Wetsuits and steamers provide the next level of thermal protection, and are usually constructed from neoprene and lined internally and externally. There are multiple options for styles, short and full length limb versions, thickness of insulation, and may include hoods, gloves and boots. The thickness of material determines its suitability for thermal protection. In general, 2–4 mm thickness (‘steamer’) is adequate for water temperatures above 24°C, 5 mm thickness for water temperatures 18°C–29°C, and 7 mm thickness for water temperatures 10°C–26°C.

Wetsuits provide insulation and slow down heat loss to the environment by restricting water circulation around the diver’s body. Therefore to function correctly, the suit must

Table 1: The Advantages and Disadvantages of Skin for Diving

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cheap</td>
<td>Sensitivity to ultraviolet (UV) radiation exposure</td>
</tr>
<tr>
<td>Dries quickly</td>
<td>Poor abrasion resistance</td>
</tr>
<tr>
<td>Self repairs (up to a point)</td>
<td>Sensitive to marine stings</td>
</tr>
<tr>
<td>Education – a “skin” diver learns quickly what stings</td>
<td>Maximum comfort</td>
</tr>
<tr>
<td>Suits water 27°C (80°F) or warmer</td>
<td></td>
</tr>
<tr>
<td>Fits most divers</td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 1. EXPOSURE SUITS (reproduced from reference 1.)
fit the diver’s body shape adequately. Most neoprene wetsuits are relatively easily donned. Zippers on sleeves, legs, and along the chest will assist donning, but reduce thermal insulation.

Advantages of wetsuits are that they are generally inexpensive, easily obtainable, and easily repaired with a minimal maintenance requirement. In general, extra training is not required to use a wetsuit, unless the diver has been unfamiliar with wetsuit diving previously, e.g., tropical divers heading into cold waters.

Disadvantages of wetsuits are that they restrict body movement, and are buoyant. The latter property necessitates compensation by way of more lead on the diver’s weightbelt. Perhaps the most significant disadvantage is that a wetsuit lets the diver down the most when insulation is needed the most. By the nature of their construction, wetsuits compress with depth underwater and lose thermal insulation as a result of this compression. Also, as a result of compression there is a loss of buoyancy at depth, which results in the need for a buoyancy compensator.

Divers often complain that wetsuits shrink with age. Certainly, as the air cells in the material collapse as a result of neoprene ageing, the suit may become stiffer and therefore less easy to don and less comfortable to wear, but mainly the ‘shrinkage’ is due to the diver’s configuration changing with age! Wetsuits are in general bulky and difficult to pack. Wetsuit hoods restrict hearing and wetsuit gloves will significantly restrict digital function.

Semi-drysuits

Semi-drysuits are fundamentally a variation on traditional wetsuits, that is, less wet wetsuits, in that they usually have neck, wrist and ankle seals to restrict water entry into the suit and a single non-gastight zipper to allow diver entry. In general, these suits are less restrictive and more comfortable than the comparable wetsuit, but tend to be more expensive and have higher maintenance requirements due to the seals being more delicate.

Drysuits

Drysuits are becoming very popular with divers. They are constructed from a variety of materials such as neoprene, trilaminates, crushed neoprene, polyurethane and rubber. Drysuits have watertight/gastight zippers, neck and wrist seals, and commonly boots attached to the suit. Drysuits trap air (and sometimes other gases such as argon) within them, and in most cases require an undergarment to be worn for thermal insulation.

Drysuits have advantages in that they provide excellent insulation both in and out of water and may increase a diver’s duration of dive by virtue of increased diver comfort. This may also result in reduced gas consumption by the diver. With a drysuit, the insulation remains constant with depth, and the design of drysuits is such that a perfect fit is not essential; divers can vary the level of thermal insulation by increasing or decreasing undergarments.

Drysuits have some disadvantages. In general, they are expensive and have much more elaborate maintenance requirements than wetsuits, particularly with regards to zippers and seals. Many drysuits require a second person to assist with donning, particularly the zipper closure.

In general, drysuits are bulky and difficult to pack, and may require more lead ballast. Hyperthermia is a potential problem, particularly on the surface. Drysuits require an extra dedicated inflator system, which adds extra complexity to the diver’s equipment, and they still require a buoyancy compensator. Drysuit divers will often require a hood and gloves as well. On prolonged dives, drysuits pose difficulty with urination, and may require the fitting of ‘pee valves’.

The use of drysuits requires formal training, which is available through training agencies. This extra training is required due to the potential problems associated with drysuit diving. These include:

- suit squeeze, which occurs when the diver descends without adding gas to the suit;
- excessive buoyancy, usually due to poor technique, but may be due to equipment failure (inflation valve/exhaust valve problems);
- excess gas building up in the suit legs, which may cause rapid ascent in an upside-down (‘suit inversion’) position;
- flooded drysuit with loss of buoyancy and thermal insulation (zipper problems or trauma to the suit may be responsible).

Drysuit insulation can be increased using argon gas inflation, as argon is a better thermal insulator than air. However, this system adds complexity and expense, as it requires a dedicated gas supply system and clear marking of argon cylinders.

Problems with diving suits

The types of suit-related incidents reported to the Diving Incident Monitor Study (DIMS) and fatalities in Project Stickybeak are listed in Table 2. There were 10 suit incidents in the 457 equipment-related incidents reported in the DIMS. One fatality related to the diver’s suit was reported in Project Stickybeak.

Discussion

There are some general measures that facilitate diver thermal comfort. You must commence a dive in a warm state, and stay warm between dives. A diver standing around in wet gear increases thermal loss. Loss of body warmth and hypothermia can occur insidiously, be aware of the potential...
TABLE 2
SUIT-RELATED MORBIDITY AND MORTALITY FROM THE DIVING INCIDENT MONITORING STUDY AND PROJECT STICKYBEAK

There were 10 incidents in 457 equipment-related incidents and one fatality reported.

Types of incidents reported
- Tight wetsuit causing difficulty breathing
- New wetsuit, altered buoyancy and diver failed to adjust weights
- Inadequate thermal protection
- Inadequate protection from marine stings
- Hood causing claustrophobia
- Tightness causing difficulty with breathing

Types of morbidity caused
- Decompression sickness
- Pulmonary barotrauma
- Hypothermia
- Coral and jellyfish stings
- Acute cardiac failure (wetsuit compression)
- Pulmonary barotrauma (drysuit overinflation)

Some of the difficulties with exposure suits may be quite unusual, such as allergy to suit components like glues, rubber, contaminants and latex.

References
2. Risberg J, Hope A. Thermal insulation properties of argon used as a dry suit inflation gas. Undersea Hyperb Med 2001; 28: 137-143

Guy Williams, MB, BS, FRACGP, is Immediate Past President of SPUMS and a general practitioner in Victoria.
Rosebud Medical Centre, 1239-41 Point Nepean Road, Rosebud, Victoria 3939, Australia.
Phone: +61-(0)3-5981-1555
Fax: +61-(0)3-5981-2213
E-mail: <rmc@surf.net.au>

Dr CJ Acott, F ANZCA, DipDHM, is the Coordinator of the Diving Incident Monitoring Study (DIMS) and a consultant for the Diver Emergency Service.

Editor’s note: For a useful review of drysuits see:

SPUMS Journal CD

The SPUMS Journal, volumes 1-30, is available on CD. To read and print these documents Adobe Acrobat Reader (version 3 or later) is required. This may be downloaded free of charge from the Adobe web site <www.adobe.com>

The CD is available to members for Aust $25 (incl. GST or overseas mailing). The cost to non-members and institutions is Aust $90 inclusive.
Cheques or money orders should be made payable to: ‘South Pacific Underwater Medicine Society’. Credit card facilities are not available for this.

Contact: Steve Goble, SPUMS Administrative Officer.
C/o ANZ College of Anaesthetists, 630 St Kilda Road, Melbourne, Victoria 3004, Australia.

Supplies are limited.