Monitoring carbon dioxide in mechanically ventilated patients during hyperbaric treatment

Asger Bjerregård and Erik Jansen

Abstract

Background: Measurement of the arterial carbon dioxide (PaCO2) is an established part of the monitoring of mechanically ventilated patients. Other ways to get information about carbon dioxide in the patient are measurement of end-tidal carbon dioxide (P EtCO2) and transcutaneous carbon dioxide (P tcCO2). Carbon dioxide in the blood and cerebral tissue has great influence on vasoactivity and thereby blood volume of the brain. We have found no studies on the correlation between PETCO2 or PTCCO2, and PaCO2 during hyperbaric oxygen therapy (HBOT).

Method: We studied 10 intubated and ventilatory stable patients during HBOT. End-tidal and transcutaneous measurements provided continuous data. Arterial blood samples were collected after reaching the operational pressure of 284 kPa (2.8 ATA) and analysed outside the chamber. A total of 17 paired samples of PETCO2, PTCCO2 and PaCO2 were obtained.

Results: There was a good correlation between PETCO2 and PaCO2 using linear regression (r² = 0.83). Bland-Altman analysis showed that PETCO2 on average was 2.22 kPa higher than PaCO2 with limits of agreement (LoA) at ± 2.4 kPa. PTCCO2, on average, was 2.16 kPa lower than PaCO2 and the correlation using linear regression was poor (r² = 0.24). Bland-Altman analysis revealed LoA at ± 3.2 kPa.

Conclusion: During hyperbaric conditions we found that PETCO2 as opposed to PTCCO2 offered the greater precision, but there was great variability among patients. Care must be taken when using PETCO2 or PTCCO2 as an estimate of PaCO2.

Key words

Patient monitoring, carbon dioxide, hypercapnia, hyperbaric oxygen therapy, ventilators

Introduction

Monitoring carbon dioxide (CO2) is vital during mechanical ventilation to prevent hypercapnia and cerebral vasodilatation. Hypercapnia is known to inhibit the normal autoregulation of cerebral blood flow resulting in vasodilatation. This increases the toxic effect of oxygen during hyperbaric oxygen therapy (HBOT) and the risk of seizures. Vasodilatation poses a specific risk in patients with cerebral oedema including carbon monoxide-poisoned patients who often have cerebral inflammation.¹⁻⁴

The correlation between arterial carbon dioxide (PaCO2) and both end-tidal (PETCO2), and transcutaneous carbon dioxide (PTCtCO2) has been well established under normobaric conditions.⁵⁻⁷ We have searched for similar studies performed during HBOT. However, no publications were found on the correlation between PETCO2 and PtcCO2 and only one study regarding the correlation between PtcCO2 and PaCO2.⁶ The goal of this study was to determine alterations in carbon dioxide during HBOT and how PETCO2 and PtcCO2 each correlate with PaCO2 under hyperbaric conditions.

Methods

SUBJECTS

This prospective observational study was performed at Rigshospitalet Copenhagen University Hospital; 10 consecutive, mechanically ventilated patients undergoing HBOT were included from January to March 2011. All data were obtained during routine clinical care. Retrospectively, the local ethics committee determined that additional informed consent was not required.

PROCEDURES

The study was conducted in a multiplace chamber equipped to handle a single intensive care patient. HBOT consisted of 90 minutes at 284 kPa (2.8 ATA). All patients were mechanically ventilated (Siarettron 1000, Siare, Italy) in volume control mode and monitored with a mainstream capnograph (M2501A, Philips, Holland). The first arterial sample was drawn a minimum of 20 minutes after reaching operational pressure and the second 30 minutes later. The samples were analysed at normobaric conditions (ABL700-series, Radiometer, Denmark) within 5 min of being drawn. The transcutaneous sensor (TCM4, Radiometer, Denmark), was placed in the mid-clavicular line, 5 cm below the right clavicle with a temperature of 44 +/-1°C.

STATISTICAL ANALYSIS

Linear regression and Bland-Altman analyses were used to assess the correlation between PETCO2 and PaCO2 and between PtcCO2 and PaCO2. In the latter, the limits of agreement are the mean difference ± 1.96 standard deviations.⁸ Quantitative results were described by the mean and standard deviation (SD). MedCalc v. 11.2 was used to analyse the data.
Results

The 10 patients included were five women and five men, aged 40 to 79 years. Nine patients came from the intensive care unit and one from the trauma centre. Eight of the patients were treated for necrotising fasciitis and two for carbon monoxide poisoning. All patients were haemodynamically stable. One patient required the use of vasopressors (noradrenaline 1 μg kg⁻¹ min⁻¹). Patients were often treated with multiple sessions, of which only one was included in this study. In three of the patients, it was only possible to obtain a single arterial blood sample.

All patients were normocapnic upon arrival at the pressure chamber with P_{aCO_2} at 4.94 (0.95) kPa. In one case it was necessary to increase the ventilation during treatment. In the remaining patients with unaltered respirator settings, the response to HBOT varied among patients as P_{aCO_2} increased between 7% and 80% between the two arterial samples. In the 17 arterial samples obtained, P_{aCO_2} was 6.2 (1.87) kPa.

During the first 10 minutes of HBOT, P_{ETCO_2} increased between 62% and 151%, but after this initial increase the P_{ETCO_2} remained stable until decompression. Using linear regression there was a good correlation between P_{ETCO_2} and P_{aCO_2} ($r^2 = 0.83$). Bland-Altman analysis showed that P_{ETCO_2} overestimated P_{aCO_2} by 2.22 kPa with limits of agreement (LoA) at ± 2.4 (Figure 1).

The transcutaneous readings were also stable after 10 minutes, but the response to HBOT varied among patients as P_{TCCO_2} decreased in some patients and increased in others. In the Bland-Altman analysis P_{TCCO_2} underestimated P_{aCO_2} by 2.16 kPa with LoA at ± 3.2 (Figure 2).

Discussion

DEVELOPMENT OF HYPERCAPNIA

It seems that two mechanisms might cause hypercapnia in mechanically ventilated patients during HBOT: reduced expiratory flow and increased ventilatory dead space, V_{DS}. As pressure rises, so does the density of inspired air. This leads to an increase in airway resistance. The inspiratory flow is maintained by the ventilator by increasing the pressure, but the expiratory flow will inevitably decrease. This results in a prolonged time of expiration and favours ventilation at higher lung volumes, decreasing the compliance of the lungs, and possibly causing CO₂ retention. It has been demonstrated that V_{DS} increases by 18% at 284 kPa in a healthy subject at rest. A worsening of the physiological mismatch between lung ventilation and perfusion is the most likely cause. If a corresponding increase in ventilation is not applied, CO₂ will increase. The wide variability in P_{aCO_2} in patients under pressure could indicate that additional factors contribute to the hypercapnia observed during HBOT.

END-TIDAL MEASUREMENTS

That P_{ETCO_2} consistently overestimated P_{aCO_2} might be the result of a phenomenon termed ‘cross-interference’. The device analyses an infrared spectrum passed through the expired gas and analyses a narrow range of wavelengths, called the absorption spectrum, where the amount of light is reduced as the amount of CO₂ rises. Gases such as nitrogen, nitrogen oxide and oxygen have very similar absorption spectra and can interfere with that of CO₂. The increased ambient pressure widens the absorption spectrum of each gas causing an increased overlap with the neighboring gases, an effect called pressure broadening, which could cause...
falsely elevated readings. The devices used today are designed to minimise the effect of cross-interference, but are not developed specifically for hyperbaric use and therefore do not take into account the effect of pressure broadening.

TRANSCUTANEOUS MEASUREMENTS

Our findings suggest that $P_{tc}CO_2$ correlates poorly with $P_{a}CO_2$. Similar results have been reported elsewhere. This is likely owing to physiological changes to the perfusion of the skin, and thereby the amount of CO$_2$. As an indicator of microcirculatory haemodynamics, $P_{tc}CO_2$ is an interesting parameter, but probably not one that can be expected to equal $P_{a}CO_2$, especially during HBOT.

Conclusions

Mechanically ventilated patients undergoing HBOT seem to be at risk of developing hypercapnia as $P_{a}CO_2$ increased by as much as 80% in some patients. The response, however, is highly individual, which underlines the need for precise estimates of $P_{a}CO_2$ during treatment. From the data gathered at 284 kPa, it seems that $P_{tc}CO_2$ overestimated $P_{a}CO_2$ on average by 2.22 kPa, but followed a linear regression model. $P_{tc}CO_2$ underestimated $P_{a}CO_2$ on average by 2.16 kPa and showed no linear correlation. Both methods for estimating $P_{a}CO_2$ can provide valuable information, but care must be taken when using such measurements to decide whether hypercapnia is imminent or present and changes in ventilation are required.

References

8. Weaver LK. Transcutaneous oxygen and carbon dioxide tensions compared to arterial blood gases in normals. Respir Care. 2007;52:1490-6.